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ABSTRACT

Change detection, a prominent research area in remote sens-
ing, is pivotal in observing and analyzing surface transfor-
mations. Despite significant advancements achieved through
deep learning-based methods, executing high-precision change
detection in spatio-temporally complex remote sensing sce-
narios still presents a substantial challenge. The recent emer-
gence of foundation models, with their powerful universality
and generalization capabilities, offers potential solutions.
However, bridging the gap of data and tasks remains a sig-
nificant obstacle. In this paper, we introduce Time Travelling
Pixels (TTP), a novel approach that integrates the latent
knowledge of the SAM foundation model into change detec-
tion. This method effectively addresses the domain shift in
general knowledge transfer and the challenge of expressing
homogeneous and heterogeneous characteristics of multi-
temporal images. The state-of-the-art results obtained on the
LEVIR-CD underscore the efficacy of the TTP. The Code is
available at https://kychen.me/TTP.

Index Terms— Remote sensing, change detection, foun-
dation model, efficient tuning, bitemporal modeling

1. INTRODUCTION
As remote sensing technology for earth observation contin-
ues to evolve, remote sensing image change detection has
surged to the forefront of research in this field. The pri-
mary objective is to analyze the changes of interest within
multi-temporal remote sensing products. These changes
are typically expressed as pixel-level binary classifications
(changed/unchanged). The dynamic attributes of remote
sensing surfaces are influenced not only by natural elements
but also by human activities. The precise perception of these
changes holds immense significance for the quantitative anal-
ysis of land cover alterations. This serves as a potent tool for
illustrating macroeconomic trends, human activities, and cli-
mate changes. The invaluable application is apparent across
various domains, encompassing urban expansion, glacier
melting, and the evaluation of economic crop yields [1–5].

High-resolution remote sensing images have emerged as
a potent tool for intricate change detection. However, exe-
cuting robust change detection in complex scenarios remains
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a formidable challenge [6, 7]. Change detection primarily
concentrates on “effective changes” amidst “non-semantic
changes” [1, 2]. Specifically, non-semantic changes insti-
gated by atmospheric conditions, remote sensors, registra-
tion, and semantic changes that are irrelevant to downstream
applications (“invalid changes”) should be disregarded. This
presents considerable obstacles to precise change detection.
Deep learning technology has made significant strides in the
realm of change detection. For example, algorithms based
on CNN can unveil robust features in changing areas with
their strong feature extraction capabilities, achieving impres-
sive performance in a variety of complex scenarios [5, 8].
Recently, methods anchored on Transformers have further
accelerated the advancement of this field. Transformers can
capture long-distance dependencies across the entire im-
age, endowing the model with a global receptive field, and
opening up new avenues for tasks like change detection that
necessitate high-level semantic knowledge [1, 3]. Despite
the remarkable success of these methods, their adaptability
in complex and evolving spatiotemporal environments is still
a considerable distance from practical application. Further-
more, as the model scale expands, the limited annotated data
for change detection significantly curtails the potential of
these models. While some strides have been made in self-
supervised representation learning and simulated data gener-
ation, they still fall short in covering the diversity of remote
sensing image scenarios caused by spatiotemporal variabil-
ity. Nor can they propel the performance of large-parameter
models across different scenes [7, 9].

The potent universality and adaptability of recent foun-
dational models have been firmly established. These models
are trained on vast quantities of data, thereby acquiring gen-
eralized knowledge and representations [10]. Foundational
models in the visual domain, such as CLIP [11] and SAM
[12], have been extensively investigated and utilized by re-
searchers. These models are repositories of a wealth of gen-
eral knowledge, enabling cross-domain transfer and sharing.
This significantly diminishes the need for annotated data for
specific tasks. However, current visual foundational models
are primarily designed for natural images, which creates a
domain gap when these models are employed for change de-
tection tasks in remote sensing images [10]. Moreover, while
most visual foundational models excel at comprehending sin-
gle images, they often fall short in extracting homogeneity
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Fig. 1. The overview of the proposed TTP. The snowflake icon symbolizes that the model parameters are frozen, while the fire
signifies training.

and heterogeneity from multiple images, particularly when
significant changes occur in the images. This capability is
crucial for change detection as it necessitates the model to
concentrate solely on “effective changes”.

In this paper, we amalgamate the general knowledge of
visual foundational models into the task of change detection.
This approach overcomes the domain shift encountered dur-
ing the knowledge transfer and the challenge of expressing
the homogeneity and heterogeneity characteristics of multi-
temporal images. We introduce Time Travelling Pixels, or
TTP, a method that seamlessly integrates temporal informa-
tion into the pixel semantic feature space. Specifically, TTP
leverages the general segmentation knowledge based on the
SAM (Segment Anything) model [12]. It introduces low-
rank fine-tuning parameters into the SAM backbone to mit-
igate the domain shift of spatial semantics. Furthermore, TTP
proposes a time-traveling activation gate that allows temporal
features to permeate the pixel semantic space, thereby equip-
ping the foundational model with the capacity to comprehend
homogeneity and heterogeneity features between bitemporal
images. Lastly, we devise a lightweight and efficient multi-
level change prediction head to decode the dense high-level
change semantic features. This innovative approach paves
the way for more accurate and efficient change detection in
remote sensing images.

The primary contributions of this paper can be encapsu-
lated as follows: 1) We address the issue of insufficient anno-
tated data by transferring the generalized latent knowledge of
foundational models to the task of change detection. We in-
troduce the Time Travelling Pixels (TTP) to bridge the time-
space domain gap in the knowledge transfer process. 2) More
specifically, we incorporate low-rank fine-tuning to mitigate
the domain shift of spatial semantics, propose a time-traveling
activation gate to augment the foundational model’s capacity
to discern inter-image correlations and design a lightweight
and efficient multi-level prediction head to decode the dense
semantic information encapsulated in the foundational model.
3) We compare the proposed method with various advanced
methods on the LEVIR-CD dataset. The results demonstrate
that our method achieves state-of-the-art performance, under-

scoring its effectiveness and potential for further applications.

2. METHODOLOGY
2.1. Overview
To mitigate the annotation requirements of change detection,
we leverage the general knowledge transferred from the foun-
dational model. In this paper, we exploit the general seg-
mentation capabilities of the SAM [12] to construct a change
detection network, TTP. TTP is primarily composed of three
components: a foundational model backbone based on low-
rank fine-tuning; a time-traveling activation gate interposed
between dual-temporal features; and an efficient multi-level
decoding head. The structure is depicted in Fig. 1.

2.2. Efficient Fine-tuning of Foundation Model
The backbone of the SAM is comprised of transformer en-
coders, which can be categorized into base, large, and huge
versions, corresponding to 12, 24, and 32 layers, respectively.
To bolster computational efficiency, the majority of trans-
former layers in the backbone employ local attention, with
only four layers utilizing global attention. In this study, we
leverage the pre-trained, robust visual backbone, maintain-
ing its parameters in a frozen state to expedite adaptation to
downstream tasks. To bridge the gap between the domains
of natural images and remote sensing images, we introduce
low-rank trainable parameters into the multi-head attention
layers, as demonstrated in the subsequent equation,

W ∗ = W0 +WaW
T
b

Q = W ∗
q X,K = W ∗

kX,V = W ∗
vX

H = Softmax(
QKT

√
d

)V
(1)

where W0 ∈ Rd×d signifies the original frozen model param-
eters, while Wa ∈ Rd×r and Wb ∈ Rd×r, r ≪ d represent
the additional fine-tuning parameters introduced. We incorpo-
rate low-rank fine-tuning in the linear projection layer of the
self-attention matrix Q, K, V in each layer of the encoder.
X ∈ Rb×n×d denotes the input features, and H ∈ Rb×n×d is
the output following the self-attention operation.



2.3. Time-traveling Activation Gate
Current visual foundational models excel at interpreting the
content of single images, yet they fall short in extracting ho-
mogenous and heterogeneous features from multiple images.
However, in change detection, it is crucial for the model to
concentrate on the “effective differences” in bi-temporal im-
ages while disregarding “irrelevant differences”. To tackle
this, we introduce the time-traveling activation gate, which
facilitates the flow of bi-temporal features into the pixel fea-
ture semantic space. This empowers the foundational model
to comprehend the changes in bi-temporal images and fo-
cus on “effective changes”. For efficiency, we only incor-
porate the activation gate after the global attention layer in
the backbone, i.e., we only employ four bi-temporal time-
traveling activation gates. Let’s consider X0 ∈ Rb×c×h×w

and X1 ∈ Rb×c×h×w as the features of the previous and sub-
sequent temporal phases, respectively. We follow the formula
below to integrate bi-temporal information,

M = δ(Φ1
proj(Φcat(X0, X1)))

X0 = X0 +Φ2
proj(M ◦X1)

X1 = X1 +Φ2
proj(M ◦X0)

(2)

where Φcat symbolizes vector concatenation along the chan-
nel dimension, Φ1

proj denotes linear channel compression, δ is
a sigmoid activation function, and ◦ signifies pixel-wise mul-
tiplication. Φ2

proj indicates linear mapping.

2.4. Multi-level Decoding Head
Remote sensing image scenes are diverse, and the scale of
surfaces can vary significantly. However, visual encoders
based on ViT typically generate feature map of a single scale.
Despite the map containing high-level global semantic in-
formation, their performance advantages can be challenging
to demonstrate without multi-level decoding heads. To ad-
dress this, we introduce a lightweight and efficient multi-level
change prediction head. This head constructs multi-level fea-
tures through transposed convolution upsampling and max
pooling downsampling. It then employs a lightweight MLP
mapping layer to output the final change probability map,

{Fi} = Φsampling(Φcat(X0, X1))

Fi = Φresize(Φ
1
proj(Fi))

M = Φ2
proj(Φcat({Fi}))

(3)

where Φsampling signifies the feature maps of various levels
generated by upsampling/downsampling, Φ1

proj and Φ2
proj rep-

resent the MLP mapping layer, and Φresize refers to applying
bilinear interpolation to the features to unify the scale for con-
catenation.

3. EXPERIMENTS
3.1. Experimental Dataset and Settings
We carried out experiments on the LEVIR-CD to substanti-
ate the efficacy of our method [5]. This dataset encompasses
637 pairs of bi-temporal images, each with a resolution of

1024 × 1024, and includes over 31,333 annotated instances
of changes. We adhered to the official standards, partitioning
the dataset into three subsets: training, validation, and testing,
comprising 445, 64, and 128 image pairs, respectively.

3.2. Evaluation Protocol and Metrics
To assess the performance, we utilized widely recognized
evaluation metrics, including Intersection over Union (IoU),
F1 score, Precision, and Recall for the change category, as
well as Overall Accuracy (OA) [1, 13].

3.3. Implementation Details
Architecture Details: TTP capitalizes on SAM’s visual
backbone for the transfer of general knowledge. During the
low-rank fine-tuning phase, we set r = 16. To guarantee
efficiency in the decoding head, we limit upsampling to 1

4 of
the original image during supervised training.
Training Details: TTP employs a binary cross-entropy func-
tion for training. We set the model input size to 512×512 and
utilize data augmentation techniques such as rotation, flip-
ping, random cropping, and photometric distortion to enhance
the sample size. During the training phase, the SAM back-
bone remains frozen. We utilize the AdamW optimizer with a
learning rate of 0.0004 and a cosine annealing scheduler with
a linear warmup to decay the learning rate. Our batch size is
set to 16, and the maximum epoch is 300.

3.4. Comparison with the State-of-the-Art
We have compared the proposed TTP with a series of state-
of-the-art change detection methods, including FC-Siam-Di
[8], DTCDSCN [14], STANet [5], SNUNet [15], BIT [1],
ChangeFormer [3], ddpm-CD [13], WNet [2], and CST-
SUNet [4]. The comparative results are presented in Tab.
1. As illustrated in the table, the proposed TTP achieved
the highest performance (92.1/85.6 F1/IoU), significantly
surpassing the contemporary state-of-the-art methods, WNet
(90.7/82.9) and CSTSUNet (90.7/83.0). This underscores
that the transfer of general knowledge from the foundational
model can bolster the effectiveness of change detection. It
also validates the efficacy of the proposed transfer method.

Table 1. Comparative results on the LEVIR-CD dataset.
Method P R F1 IoU OA

FC-Siam-Di [8] (2018) 89.5 83.3 86.3 75.9 98.7
DTCDSCN [14] (2020) 88.5 86.8 87.7 78.1 98.8

STANet [5] (2020) 83.8 91.0 87.3 77.4 98.7
SNUNet [15] (2021) 89.2 87.2 88.2 78.8 98.8

BIT [1] (2021) 89.2 89.4 89.3 80.7 98.9
ChangeFormer [3] (2022) 92.1 88.8 90.4 82.5 99.0

ddpm-CD [13] (2022) - - 90.9 83.4 99.1
WNet [2] (2023) 91.2 90.2 90.7 82.9 99.1

CSTSUNet [4] (2023) 92.0 89.4 90.7 83.0 99.1

TTP (Ours) 93.0 91.7 92.1 85.6 99.2
TTP (w/o ttg) 92.2 90.3 91.1 84.2 99.1

TTP (w/o ttg, ml) 91.9 89.3 90.6 82.8 99.0
TTP (w/o ttg, ml, tuning) 80.9 69.3 74.6 59.5 97.6



3.5. Ablation Study
To thoroughly evaluate the effectiveness of each component,
we conducted a series of ablation experiments on the LEVIR-
CD dataset, adhering to the same training settings as TTP. As
illustrated in Tab. 1, the performance experienced a decline
when the time travel gate (ttg) and multi-level decoding head
(ml) were removed. Moreover, the removal of the low-rank
fine-tuning parameters in the foundational model led to a dra-
matic drop in performance. These observations underscore
that the method proposed in this paper can effectively bridge
the domain gap and enhance spatio-temporal understanding.
They also validate the effectiveness of each component in the
change detection task.

4. CONCLUSION
In this paper, we tackle the challenge of model generaliza-
tion in complex spatiotemporal remote sensing scenarios by
infusing the generic knowledge of foundational models into
the task of change detection. Specifically, we introduce low-
rank fine-tuning to bridge the spatial semantic chasm between
natural and remote sensing images, thereby mitigating the
limitations of the foundational model. We propose a time-
travel activation gate to endow the foundational model with
the capacity for temporal modeling. Additionally, we de-
sign a multi-level change prediction head to decode dense
features. Experimental results on the LEVIR-CD dataset un-
derscore the effectiveness of our proposed modules, with the
proposed TTP achieving the best performance. This innova-
tive approach paves the way for more accurate and efficient
change detection in remote sensing images.

References
[1] Hao Chen, Zipeng Qi, and Zhenwei Shi, “Remote sensing im-

age change detection with transformers,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 60, pp. 1–14, 2021.

[2] Xu Tang, Tianxiang Zhang, Jingjing Ma, Xiangrong Zhang,
Fang Liu, and Licheng Jiao, “Wnet: W-shaped hierarchical
network for remote sensing image change detection,” IEEE
Transactions on Geoscience and Remote Sensing, 2023.

[3] Wele Gedara Chaminda Bandara and Vishal M Patel, “A
transformer-based siamese network for change detection,” in
IGARSS 2022-2022 IEEE International Geoscience and Re-
mote Sensing Symposium. IEEE, 2022, pp. 207–210.

[4] Yaping Wu, Lu Li, Nan Wang, Wei Li, Junfang Fan, Ran Tao,
Xin Wen, and Yanfeng Wang, “Cstsunet: A cross swin trans-
former based siamese u-shape network for change detection in
remote sensing images,” IEEE Transactions on Geoscience
and Remote Sensing, 2023.

[5] Hao Chen and Zhenwei Shi, “A spatial-temporal attention-
based method and a new dataset for remote sensing image
change detection,” Remote Sensing, vol. 12, no. 10, pp. 1662,
2020.

[6] Keyan Chen, Wenyuan Li, Sen Lei, Jianqi Chen, Xiaolong
Jiang, Zhengxia Zou, and Zhenwei Shi, “Continuous remote
sensing image super-resolution based on context interaction in
implicit function space,” IEEE Transactions on Geoscience
and Remote Sensing, 2023.

[7] Keyan Chen, Wenyuan Li, Jianqi Chen, Zhengxia Zou, and
Zhenwei Shi, “Resolution-agnostic remote sensing scene clas-
sification with implicit neural representations,” IEEE Geo-
science and Remote Sensing Letters, vol. 20, pp. 1–5, 2022.

[8] Rodrigo Caye Daudt, Bertr Le Saux, and Alexandre Boulch,
“Fully convolutional siamese networks for change detection,”
in 2018 25th IEEE International Conference on Image Pro-
cessing (ICIP). IEEE, 2018, pp. 4063–4067.

[9] Hao Chen, Haotian Zhang, Keyan Chen, Chenyao Zhou, Song
Chen, Zhengxia Zou, and Zhenwei Shi, “Continuous cross-
resolution remote sensing image change detection,” IEEE
Transactions on Geoscience and Remote Sensing, 2023.

[10] Keyan Chen, Chenyang Liu, Hao Chen, Haotian Zhang,
Wenyuan Li, Zhengxia Zou, and Zhenwei Shi, “Rsprompter:
Learning to prompt for remote sensing instance segmenta-
tion based on visual foundation model,” arXiv preprint
arXiv:2306.16269, 2023.

[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh,
Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda
Askell, Pamela Mishkin, Jack Clark, et al., “Learning trans-
ferable visual models from natural language supervision,” in
International conference on machine learning. PMLR, 2021,
pp. 8748–8763.

[12] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al., “Segment any-
thing,” arXiv preprint arXiv:2304.02643, 2023.

[13] Wele Gedara Chaminda Bandara, Nithin Gopalakrishnan Nair,
and Vishal M Patel, “Ddpm-cd: Remote sensing change de-
tection using denoising diffusion probabilistic models,” arXiv
preprint arXiv:2206.11892, 2022.

[14] Yi Liu, Chao Pang, Zongqian Zhan, Xiaomeng Zhang, and Xue
Yang, “Building change detection for remote sensing images
using a dual-task constrained deep siamese convolutional net-
work model,” IEEE Geoscience and Remote Sensing Letters,
vol. 18, no. 5, pp. 811–815, 2020.

[15] Sheng Fang, Kaiyu Li, Jinyuan Shao, and Zhe Li, “Snunet-cd:
A densely connected siamese network for change detection of
vhr images,” IEEE Geoscience and Remote Sensing Letters,
vol. 19, pp. 1–5, 2021.


	 Introduction
	 Methodology
	 Overview
	 Efficient Fine-tuning of Foundation Model
	  Time-traveling Activation Gate 
	  Multi-level Decoding Head 

	 Experiments
	 Experimental Dataset and Settings
	 Evaluation Protocol and Metrics
	 Implementation Details
	 Comparison with the State-of-the-Art
	 Ablation Study

	 Conclusion

